|           | F 1 1 | <br> | <br> |  |
|-----------|-------|------|------|--|
| Reg. No.: |       |      |      |  |
|           |       |      |      |  |

# Question Paper Code: 80134

## B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

#### Fourth Semester

### Electrical and Electronics Engineering

# ${\tt EE~8451-LINEAR~INTEGRATED~CIRCUITS~AND~APPLICATIONS}$

(Common to Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

### · Answer ALL questions.

### PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define the term Encapsulation.
- 2. List the advantages of thin film resistors.
- 3. Give the various types of frequency compensation.
- 4. The output voltage of a certain op-amp circuit changes by 20 V in 4  $\mu s.$  What is its slew rate?
- 5. List the four requirements of an Instrumentation amplifier.
- 6. Give the circuit using Op-amp for a first order low-pass filter with variable gain.
- 7. Determine the frequency of oscillations, if the duty cycle D = 20% and the ON period  $T_{on}$  = 2 ms.
- 8. Draw the output of a missing pulse detector.
- 9. What is a Load cell?
- Give the seven output voltage options available in fixed voltage series regulator.

### PART B - (5 × 13 = 65 marks)

- (7)Explain the fabrication technique of FET in detail. 11. (a) (i)
  - Discuss the Photolithographic process with necessary illustrations. (ii) (6)

Or

- Describe the methods in Thin and Thick film technology. (b)
- For the given non-inverting amplifier shown in figure below, determine 12. (i)  $A_v$ ; (ii)  $V_0$ ; (iii)  $I_L$  and (iv)  $I_0$ .



Or

- Explain with neat circuit expressions about the working of (i) Inverting (b) Amplifiers (ii) Integrating circuit and derive the gain.
- Find the following for the given Op-amp differential amplifier: (i) The 13. gain of the amplifier (ii) The input resistance (iii) Output voltage, when  $1\sin(2000t)$  V and  $1.2\sin(2000t)$ inputs are  $R_1 = R_3 = 1.2 \text{ k}\Omega \text{ and } R_2 = R_4 = 22 \text{ k}\Omega.$



Or

Discuss the application of Op-amps, with necessary equivalent circuits and expressions for (i) D/A converter (ii) A/D converter.

14. (a) In detail, explain the functional block and characteristics of 555 Timer with its PWM application.

Or

- (b) Discuss the ICC 566 as a voltage controlled oscillator with necessary illustrations.
- 15. (a) Explain the Fixed voltage regulator and its applications.

Or

(b) Explain the function of SMPS with neat waveforms and schema.

PART C —  $(1 \times 15 = 15 \text{ marks})$ 

16. (a) With neat figures explain the design of a circuit for performing (i) square wave generation (ii) sweep signal conversion (iii) clamped signal output. (15)

Or

(b) Determine the output frequency  $f_0$ , lock range  $\Delta f_L$  and capture range  $\Delta f_C$  of IC 565. Assume  $R_1=15\,\mathrm{k}\Omega$ ,  $C_1=0.01\,\mu\mathrm{F}$ ,  $C=1\,\mu\mathrm{F}$  and the supply voltage is +12 V.

the state of the same of the s

print a rest from the same that the second s

1100